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A NEW STRATEGY FOR THE ENANTIOSELECTIVE SYNTHESIS
OF ASPIDOSPERMA ALKALOIDS :
II - ACHIEVEMENT OF THE PENTACYCLIC SYSTEM.

Didier Desmaele and Jean d’Angelo
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ESPCI 10 rue Vauquelin, 75231 Paris Cedex 05 (France).

Abstract : Carbazolone 5 has been converted in eleven steps into alkaloid analog 1 (R = Me) (13 % overall
yield).

In the preceding paper !, we proposed a new approach to pentacyclic Aspidosperma alkaloids [(e.g.
(—)-aspidospermidine, 1, R = Et], based on the disconnection [1 — 2 — 3}, in which carbazolones 3 constitute
the key [ABC]-type tricyclic subunits.

z
N (o)
E| D
SuCy [T
Iil N
i H ;'{
1 3

In this respect, the optically active (R)-keto-ester § was efficiently prepared from cyclohexanone 4.
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In this paper we report on the conversion of the tricyclic compound § into aspidospermidine analog 1 (R
= Me). The first problem encountered in the present strategy is the construction of the [ABCD} tetracyclic
derivatives of type 2. This implies a selective ring closure by using the three carbon atoms of the propionate
appendage at C-20 of carbazolone 5 (Le Men-Taylor Aspidosperma alkaloids numbering), bearing in mind that
the crucial, "natural”, cis CD ring junction must be controlled at this stage.

Having chosen to create ring D by heterocyclization between the N® and C-21 centers, an azido group,
precursor of the requisite amine function at C-3, was introduced at the end of the side-chain of tricyclic
compound §, according to the following three steps procedure {S — 7a]. Chemoselective reduction of the ester
of carbazolone § (LiEt;BH, THF, —10 °C, 1 h, 87 % yield) led to alcohol 6 2 which was then transformed into
azide 7a 3 (i : MsCl, E;N, CH,Cl,, 0 °C, 1 h ; ii : NaN5, DMF, 80 °C, 3 h, 80 % yield).

The electrophilic character of the carbonyl function in tricyclic intermediate 7a is dramatically lowered
by conjugation with the electron-rich indole nucleus. Because the achievement of the present annulation
requires an enhancement of this electrophilicity, the indole nitrogen atom of compound 7a was protected with
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an electron-withdrawing group, namely by sulfonation (p MeOCgH,SO,CI, CHZCIZ, NaOH 50 %,
tetrabutylammonium hydrogen sulfate, 2 h, 20 °C, 93 % yield).

OH

aR=H .
b R=pMeOCgH,SO, |
In the first ring closure route we have explored, the azido group of carbazolone 7b 4 was reduced (PPh;,
THF, 20 °C, 24 h, 88 % yield)®, leading directly to tetracyclic imine 8 8 (probably, via-an aza-Wittig annulation
process which involves an intermediary iminophosphorane) . Unfortunately, all attempts of reduction of this
imine (NaBH;CN/ACOH, H,/PtO,, BH;-Me,S, Hy/Pd-C, NaBH,/CeCl;) gave amine 9 alone, possessing the
undesired, frans CD ring junction. Thus, clearly, reduction processes always take place on the less hindered
B-face of imine 8. It should be noted that the catalytic hydrogenation of compound 7b also gave directly amine
97, :

T —>

(R = p MeOCgH,S0,)

In view of such disappointing results, we turned next to the following alternative annulation procedure,
reasoning that the acid-promoted elimination of the hydroxyl group in comj)ound 11 -an elimination assisted by
the indole moiety- should give the intermediary iminium ion 12. The subsequent intramolecular trapping of this
iminium ion by the amide hitrogen atom borne by the side-chain should take place on the less hindered p-face
of the molecule, leading therefore to the desired cis CD ring jﬁnction [12 — 13]. » -

The requisite alcohol 11 was prepared as follows. Ketone 7b was first reduced (NaBH,, refluxing
EtOH, 10 min, 80 % yield) & into a 1.5:1 mixture of epimeric alcohols 10 ? (the lack of sterebcontrol at C-21 at
this stage is irrelevant, since the hybridization of this carbon atom becomes sp? in iminium jon 12). Staudinger
reduction of compound 10 (PPh;, THF, 20 °C, 48 h, then H,0), followed by Schotten-Baumann acylation of
the resulting primary amine, with phenylthioacetyl chloride -which introduces the two missing carbon atoms of
the future ring E- (PhSCH,COCl, 1 N NaOH, 0 °C, 20 min, 76 % yield from 10) gave the desired
amido-alcohol 11 19,

As expected, upon acidic treatment (TFA, CH,Cl,, 0 °C, 10 min, quantitative yield), compound 11 led
to tetracyclic product 13 1, having the desired cis CD ring junction, as a single derivative, probably through
the intermediary iminium ion 12.
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Completion of the synthesis of compound 1 (R = Me) from tetracyclic 13 now requires the
diastereoselective construction of the fifth ring E ; this was efficiently performed by using Magnus’ procedure
12, For this purpose, the phenylthio sulfur atom of compound 13 was first oxidized (NalQ,, THF/MeOH/H,0,
24 h, 95 % yield) and the resulting sulfoxide submitted to a Pummerer rearrangement (TFAA, 0 °C, then 1 hin
refluxing PhCl, 85 % yield), giving the pentacyclic derivative 14, as an epimeric mixture at C-6.
Desulfurization of the latter compound (Ra-Ni in DMF, 20 °C, 10 min, 60 % yield) led to pentacyclic amide 15
13, as a single isomer. When this compound was treated with a large excess of lithium aluminum hydride 12
(THF, 20 °C, 24 h, 70 % yield), three simultaneous reactions took place : cleavage of the sulfamido group and
reduction of both amide and enamine functions, giving the target alkaloid analog 1 (R = Me) 14
[(-)-19-noraspidospermidine].

(R =p MeOCgH,50)

Tricyclic derivative § has been thus converted into compound 1 (R = Me) in eleven steps (13 % overall
yield). Enantioselective synthesis of this alkaloid analog from the optically active monocyclic [C)-type subunit
4, according to the [C — AC — ABC — ABCD — ABCDE] present strategy, has been therefore
accomplished in 19 steps, with an overall yield of 5 %. Synthesis of several natural Aspidosperma alkaloids, by
using the above methodology are under investigation.
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