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Abstract : Carbazolone 5 has been converted in eleven steps into alkaloid analog Z (R = Me) (13 46 overall 
yield). 

In the preceding paper l, we proposed a new approach to pentacyclic Aspidosperma alkaloids [(e.g. 

(-)-aspidospermldine, 1, R = Et], based on the disconnection [l -+ 2 -+ 31, in which carbazolones 3 constitute 

the key [ABC]-type tricyclic subunits. 

In this respect, the optically active (R)-keto-ester 5 was efftciently prepared fmm cyclohexanone 4. 
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In this paper we report on the conversion of the tricyclic compound 5 into aspidospermidine analog 1 (R 

= Me). The first problem encountered in the present strategy is the construction of the [ABCD] tetracyclic 

derivatives of type 2. This implies a selective ring closure by using the three carbon atoms of the propionate 

appendage at C-20 of carbazolone 5 (Le Men-Taylor Aspidosperma alkaloids numbering), bearing in mind that 

the crucial, “natural”, cis CD ring junction must be controlled at this stage. 

Having chosen to create ring D by heterocyclization between the Nb and C-21 centers, an axido group, 

precursor of the requisite amine function at C-3, was introduced at the end of the side-chain of tricyclic 

compound 5. according to the following three steps procedure [5 ---, 7a]. Chemoselective reduction of the ester 

of carbazolone 5 (LiEt3BH, THF, -10 ‘C, 1 h, 87 % yield) led to alcohol 6 * which was then transformed into 

azide 7a 3 (i : MsCl, Et3N, CH2C12, 0 “C, 1 h ; ii : NaN,, DMF, 80 “C, 3 h, 80 % yield). 

The electrophilic character of the carbonyl function in tricyclic intermediate 7a is dramatically lowered 

by conjugation with the electron-rich indole nucleus. Because the achievement of the present annulation 

requires an enhancement of this electmphilicity, the indole nitrogen atom of compound 7a was protected with 

883 



an electron-withdrawing group, namely by sulfonation @ MeOC,&SQCl, CI&C&, NaOH 50 %, 

tetrabutylammonium hydrogen sulfate, 2 h, 20 T, 93 % yield). 

I: 1: 
6 7 

a R=H 
~R=PMeOC&S~' 

In the fast ring closure route we have explored, the azido group of carbazclone 7b 4 was reduced (PPhs, 

‘HIP, 20 T. 24 h, 88 96 yield)5, leading directly to tetracyclic imine 8 6 (probably, via an aza-Wittig annulation 

process which involves’an intermediary iminophosphorane) . Unfortunately, all attempts of reduction of this 

imine (NaBH&N/AcOH, Hzjpt02, BHs-Me+, Hfld-C, NaBH&eCls) gave amine 9 alone, possessing the 

undesired, rruns CD ring junction. Thus, clearly, reduction processes always take place on the less hindered 

B-face of imine 8. It should be noted that the catalytic hydrogenation of compound 7b also gave directly amine 

9 7. 

li 1: 
8 9 

(a= PM~&$(?$ 

In view of such disappointing results, we turned next to the following alternative annulation procedure, 

reasoning that the acid-promoted elimination of the hydroxyl group in compound 11 -an elimination assisted by 

the indole moiety- should give the intermediary iminium ion 12. The subsequent intramoleculsr trapping of this 

iminium ion by the amide nitrogen atom borne by the side-chain should take place on the less hindered B-face 

of the molecule, leading therefore to the desired cis CD ring junction [12 ---, 19. 

The requisite alcohol 11 was prepared as follows. Ketone 7b was first reduced (NaBH4, refluxing 

EtOH, 10 min. 80 % yield) * into a 1.51 mixture of epimeric alcohols 10 9 (the lack of stere0control at C-21 at 

this stage is irrelevant, since the hybridization of this carbon atom becomes sp2 in iminium ion 12). Staudinger 

reduction of compound 10 (PPhs, TI-IP, 20 T. 48 h, then H20), followed by Schotten-Baumann acylation of 

the resulting primary amine, with phenylthioacetyl chloride -which introduces the two missing carbon atoms of 

the future ring E- (PhSCH2COCl, 1 N NaOH, 0 ‘T, 20 mitt, 76 8 yield from 10) gave the desired 

amido-alcohol 11 lo. 

As expected, upon acidic treatment (TPA, CHzC12,O “C, 10 min. quantitative yield), compound II led 

to tetracyclic pmduct 13 *l, having the desired cis CD ring junction. m a singZe derivative, probably through 

the intermediary iminium ion 12. 
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10 (R =p MeO’$jH4sO$ 

Me 
12 (R = p hkilC,&S02, 

13 

Completion of the synthesis of compound 1 (R = Me) from tetracyclic 13 now requires the 

diastereoselective construction of the fifth ring E ; this was efftciently performed by using Magnus’ procedure 

12. For this purpose, the p h n e y lthio sulfur atom of compound 13 was Brst oxidized (NaI04, THF/MeOH/H~O, 

24 h, 95 % yield) and the resulting sulfoxide submitted to a Pummemr rearrangement (TFAA, 0 “C. then 1 h in 

refluxing PhCl, 85 % yield), giving the pentacyclic derivative 14. as an epimeric mixture at C-6. 

Desulfurization of the latter compound (Ra-Ni in DMF, 20 “C, 10 min, 60 % yield) led to pentacyclic amide 15 

13, as a single isomer. When this compound was treated with a large excess of lithium aluminum hydride l2 

(THF, 20 “C. 24 h, 70 % yield), three simultaneous reactions took place : cleavage of the sulfamido group and 

reduction of both amide and enamine functions, giving the target alkaloid analog 1 (R = Me) l4 

[(-)-19-noraspidospermidine]. 

1 H 
H 

15 1 (R=Me) 

(R = P MdJ(Yt+qz, 

Tricyclic derivative 5 has been thus converted into compound 1 (R = Me) in eleven steps (13 % overall 

yield). Enantioselective synthesis of this alkaloid analog from the optically active monocyclic [Cl-type subunit 

4, according to the [C -+ AC - ABC --, ABCD + ABCDE] present strategy, has been therefore 

accomplished in 19 steps, with an overall yield of 5 %. Synthesis of several natural Aspidosperma alkaloids, by 

using the above methodology are under investigation. 
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